Analysis of dynamical systems:
Dynamical systems can be described either as ordinary differential equations in possibly multiple scalar variables, or in state-space form that is a first-order differential equation in a possibly multidimensional vecfor-valued state variable.

- Transforming ODE descriptions to state-space form: We have already done this before. Let's explore if through a few examples. Ex 1: Suppose the ODE description of a dynamical system is given by

$$
\begin{aligned}
& \frac{d^{3} x}{d t^{3}}+y^{2} \frac{d^{2} x}{d t^{2}}-y^{3}+3=0 \\
& \frac{d^{2} y}{d t^{2}}-x y+7=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{3} x}{d t^{3}}+y^{2} \frac{d^{2} x}{d t^{2}}-y^{3}+3=0 \\
& \frac{d^{2} y}{d t^{2}}-x y+7=0 .
\end{aligned}
$$

... can be represented as

$$
\begin{aligned}
& \ddot{x}+y^{2} \ddot{x}-y^{3}+3=0, \\
& \ddot{y}-x y+7=0 .
\end{aligned}
$$

Step 1: Identify the states.

$$
X:=\left(\begin{array}{l}
x \\
\dot{x} \\
\dot{x} \\
y \\
\dot{y}
\end{array}\right) \quad \begin{aligned}
& \text { Notice how we start from } \\
& x, y \text { and go up to derivatives } \\
& \text { of order } 1 \text { less than the } \\
& \text { max. order in the ODEs. }
\end{aligned}
$$

Step 2: Express \dot{X} as a function of X.

$$
\dot{X}=\left(\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\ddot{x} \\
\dot{y} \\
\ddot{y}
\end{array}\right)=\left(\begin{array}{c}
\dot{x} \\
\ddot{x} \\
y^{3}-3-y^{2} \ddot{x} \\
\dot{y} \\
x y-7
\end{array}\right)\left(\begin{array}{c}
\text { Each row is a } \\
\text { function of } \\
\text { entries in } X . Y_{o n} \\
\text { are done! }
\end{array}\right.
$$

Remark: In this dynamical system description, we express \dot{X} as purely a function of X. There is no "input" x "ur the description.

Two quick definitions:

- Order of a differential equation is the order of the highest derivative in that differential equation.

Order: 3

$$
\begin{aligned}
& \frac{d^{3} x}{d t^{3}}+y^{2} \frac{d^{2} x}{d t^{2}}-y^{3}+3=0< \\
& \frac{d^{2} y}{d t^{2}}-x y+7=0 \longleftarrow
\end{aligned} \text { Order:2 }
$$

- Order of a dynamical system is the dimension of the state variable.

$$
x:=\left(\begin{array}{l}
x \\
\dot{x} \\
\dot{x} \\
y \\
\dot{y}
\end{array}\right)<\text { Order :5. }
$$

Ex 2: Consider a scalar dynamical system. described by

$$
\ddot{x}+\rho_{\dot{x}}+k x=u,
$$

where $u \in \mathbb{R}$ is the input. Express this linear dynamical system in the state-sparce form $\dot{X}=A X+B u$, i.e., identify the states X, and the relevant matrices A, B.

$$
\begin{aligned}
& X=\binom{x}{\dot{x}} . \\
& \dot{X}=\binom{\dot{x}}{\dot{i}}=\binom{\dot{x}}{-f \dot{x}-k x+u} \\
& =\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-k & -\rho
\end{array}\right)}_{:=A} \underbrace{\binom{x}{\dot{x}}}_{=x}+\underbrace{\binom{1}{0}}_{:=B} u
\end{aligned}
$$

Remark: Linear ODE's always admit a linear dynamical system description in state-space form.

- Finding system trajectories

Next on our agenda, we would like to compute how the system evolves over time, given an initial point and the input. More precisely, consider a dynamical system with the Sate space description $\dot{x}=F(x, u)$ Goal: Given $u, x(0)$, find $x(t)$. This amounts to integrating $\dot{x}=F(x, u)$. We have two options:

- Analytically solve the differential equation $\dot{x}=F(x, u)$.

This in general is difficult to do unless F is of a specific form

- Numerically solve the equation approximately.

Let's consider an example where we caw both solve the differential equation analytically and then compare its solution with a numerical scheme.
Example: Scalar dynamical system $\dot{x}=x-3$, starting from $x(0)=1$.
Analytical solution:

$$
\begin{aligned}
& \frac{d x}{d t}=x-3 \\
& \Rightarrow \int_{x(0)}^{x(t)} \frac{d x}{x-3}=\int_{0}^{t} d t \\
& \Rightarrow \ln \left(\frac{x(t)-3}{x(0)-3}\right)=t \\
& \Rightarrow x(t)=3+(x(0)-3) e^{t} \\
&=3-2 e^{t} .
\end{aligned}
$$

Remark: This would not be easy if the dynamical system was given by say

$$
\dot{x}=\cot \left(e^{\sin x}\right)-3
$$

Hence, we study numerical methods.
Numerical solution: We will study Euler's method to solve $\dot{x}=x-3$.

$$
\begin{gathered}
\quad \frac{d}{d t} x(t)=x(t)-3 . \\
\Rightarrow \lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}=x(t)-3
\end{gathered}
$$

Approximate this by $\frac{x(t+\Delta t)-x(t)}{\Delta t}$ for a positive Δt.
... The smaller the Δt, the better the approximation.

Using this approximation,

$$
x(t+\Delta t) \approx x(t)+\Delta t \cdot(x(t)-3) .
$$

Given $x(0)=1$ with a choice of $\Delta t=0.1$, let's compute $x(N \cdot \Delta t)$ for $N=1,2, \ldots$.

$$
\begin{aligned}
x(0.1) & \approx x(0)+0.1(\times(0)-3) \\
& =1.1 \times(0)-0.3 \\
& =0.8 \\
x(0.2) & \approx 1.1 \times(0.1)-0.3=0.58 \\
x(0.3) & \approx 1.1 \times(0.2)-0.3=0.34 \\
x(0.4) & \approx 1.1 \times(0.3)-0.3=0.07 \\
x(0.5) & \approx 1.1 \times(0.4)-0.3=-0.22
\end{aligned}
$$

Notice that each step is approximate, and hence, error teide to accumulate as you continue the process for larger number of iterations.

Let's compare the analytical and numerical solutions of $\dot{x}=x-3$, starting from $x(0)=1$.

t	$x(t)$ from analytical solution $x(t)=3-2 e^{t}$	$x_{\varepsilon}(t)$ Euler's frow method	Absolute error of Euler's method $\left\|x_{\varepsilon}(t)-x(t)\right\| .100 \%$
0	1	1	0
0.1	0.79	0.8	0.01
0.2	0.56	0.58	0.02
0.3	0.30	0.34	0.04
0.4	0.02	0.07	0.05
0.5	-0.30	-0.22	0.08

absolute error is increasing with time.

Euler's method for higher-order systems.
Let $\dot{X}=F(x, u)$, where $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$.
Then, $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$.

- Replace \dot{x} by $\frac{x(t+\Delta t)-x(t)}{\Delta t}$.
- Then, compute x iteratively using the relation

$$
x(t+\Delta t)=x(t)+\Delta t \cdot F(x(t), u(t))
$$

Let's do an example.
Suppose $X=\binom{x_{1}}{x_{2}}$, and $\dot{X}=\binom{x_{1}^{2}-x_{2}}{x_{2}^{2}+4}$.
Compute $x(1)$ using $\Delta t=1$,
starting from $X(0)=\binom{0}{1}$.

$$
\begin{aligned}
& X(1)=x(6)+\binom{x_{1}(0)^{2}-x_{2}(0)}{x_{2}(0)^{2}+4}=\binom{0}{1}+\binom{-1}{5}=\binom{-1}{6} \text {. } \\
& x(2)=x(1)+\binom{x_{1}(1)^{2}-x_{2}(1)}{x_{2}(1)^{2}+4}=\binom{-1}{6}+\binom{-35}{40}=\binom{-36}{46}
\end{aligned}
$$

Another example:
Consider the dynamical system described by $\ddot{x}+x^{3}=5$. Compute $x(0.2)$, starting from $x(0)=1,\left.\frac{d x}{d t}\right|_{t=0}=0$ using Euler's method with a step size of 0.1 .

- Transform ODE to state space description:

$$
X=\binom{x}{\dot{x}} \Rightarrow \dot{X}=\binom{\dot{x}}{\ddot{x}}=\binom{\dot{x}}{5-x^{3}} .
$$

For notational convenience call $x_{1}=x, x_{2}=\dot{x}$. Then, $X=\binom{x_{1}}{x_{2}}$, and $\dot{X}=\binom{x_{2}}{5-x_{1}^{3}}$.

$$
\begin{aligned}
X(0.1) & =\binom{x_{1}(0)}{x_{2}(0)}+0.1 \cdot\binom{x_{2}(0)}{5-x_{1}(0)^{3}} \\
& =\binom{1}{0}+0.1\binom{0}{5-1}=\binom{1}{0.4} . \\
X(0.2) & =\binom{x_{1}(0.1)}{x_{2}(0.1)}+0.1\binom{x_{2}(0.1)}{5-x_{1}(0.1)^{3}}=\binom{1}{0.4}+0.1\binom{0.4}{5-1^{3}} \\
& =\binom{1.04}{0.8} \ldots \text { Read off } x(0.2)=x_{1}(0.2)=1.04 .
\end{aligned}
$$

Equilibrium pts:
X_{e} is an equilibrium pt. of a dynamical system $\dot{X}=F(x)$ if $F\left(x_{e}\right)=0$.
If you start the dynamical system at an equilibrium pt. X_{e}, notice that $\dot{x}=F\left(x_{e}\right)=0$. meaning the system remains at X_{e} forever!
Example: $\quad \dot{X}=\binom{x_{1}}{x_{2}}, \quad \dot{X}=\binom{x_{1}-x_{2}^{2}}{x_{1}-1}$.
Eq. pts satisfy $x_{1}-x_{2}^{2}=0$ and $x_{1}-1=0$. Solutions are given by $x_{1}=1, x_{2}= \pm 1$.
\therefore There are 2 eq. pts. $\binom{1}{1}$ and $\binom{1}{-1}$.

