Analysis of dynamical systems:

Dynamical systems can be described either as ordinary differential equations in possibly multiple scalar variables, or in state-space form that is a first-order differential equation in a possibly multi-dimensional vector-valued state variable.

· Transforming ODE descriptions to state-space form: We have already done this before det's

explore it through a few examples.

Ex 1: Suppose the ODE description of a dynamical system is given by $\frac{d^3x}{dt^3} + y^2 \frac{d^2x}{dt^2} - y^3 + 3 = 0$

 $\frac{d^2y}{dt^2} - xy + 7 = 0.$

$$\frac{d^{3}x}{dt^{3}} + y^{2} \frac{d^{2}x}{dt^{2}} - y^{3} + 3 = 0$$

$$\frac{d^{3}y}{dt^{2}} - xy + 7 = 0$$
P1: Identify the

Step 1: Identify the states.

X:= (x)

Notice how we start from x, y and go up to derivatives of order 1 less than the max. order in the ODE.

of order 1 less than the max. order in the ODEs.

Step 2: Express X as a function of X.

Remark: In this dynamical system description, we express X as purely a function of X. There is no "input" re in the description.

Two quick definitions:

· Order of a differential equation is the order of the highest derivative in that differential equation.
Order: 3

$$\frac{d^{3}x}{dt^{3}} + y^{2} \frac{d^{2}x}{dt^{2}} - y^{3} + 3 = 0$$

$$\frac{d^{3}y}{dt^{2}} - xy + 7 = 0$$
Order: 2

· Order of a dynamical system is the The state variable.

Ex 2: Consider a scalar dynamical system. described by X + fx + Rx = u, where uER is the input. Express this linear dynamical system in the state-space form X = AX + Bu, i.e., identify the states X, and the relevant matrices A, B. $X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}.$ $\dot{X} = \begin{pmatrix} \dot{x} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} \dot{x} \\ -\dot{y}\dot{x} - Kz + u \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ -R & -P \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$ $= X \qquad := B$

Remark: Linear ODE's always admit a linear dynamical eystem description in state-space form.

· Finding system trajectories

Next on our agenda, we would like to compute how the cystem evolves over time, given an initial point and the imput. More precisely, consider a dynamical system with the date space description $\dot{X} = F(X, u)$.

Goal: Given u, X(0), find X(t).

This amounts to integrating $\dot{X} = F(X, u)$.

We have two options:

- Analytically solve the differential equation $\dot{X} = F(X, u)$.

 This in general is difficult to do unless F is of a specific form
- · Numerically solve the equation approximately.

Let's consider an example where we can both colve the differential equation analytically and then compare its solution with a numerical scheme.

Example : Scalar dynamical system $\dot{x} = x - 3$, starting from x(0) = 1.

Analytical solution:

$$\frac{dx}{dt} = x-3.$$

$$\Rightarrow \int_{x(0)}^{x(0)} \frac{dx}{dx} = \int_{0}^{t} dt$$

$$\Rightarrow \ln \left(\frac{\chi(t) - 3}{\chi(0) - 3} \right) = t$$

$$\Rightarrow \alpha(t) = 3 + (\alpha(0) - 3)e^{t}$$
= 3 - 2e^t.

Remark: This would not be easy if the dynamical system was given by say $\dot{x} = \cot(e^{\sin x}) - 3$.

Hence, we study numerical methods.

Numerical solution: We will study Euler's method to solve $\dot{x} = x-3$.

$$\frac{d}{dt}x(t) = x(t) - 3.$$

$$\Rightarrow \lim_{\Delta t \to 0} \frac{\chi(t + \Delta t) - \chi(t)}{\Delta t} = \chi(t) - 3$$

Approximate this by $\frac{2(t+\Delta t)-z(t)}{\Delta t}$ for a positive Δt .

... The smaller the Δt , the better the approximation.

Using this approximation, $x(t+\Delta t)$ $\approx x(t) + \Delta t \cdot (x(t)-3)$. Given x(0) = 1 with a choice of $\Delta t = 0.1$, let's compute $x(N.\Delta t)$ for N = 1, 2, ... $\times (0.1) \approx \times (0) + 0.1 (\times (0) -3)$ $= 1.1 \times (0) - 0.3$ $x(0.2) \approx 1.1 \times (0.1) - 0.3$ $x(0.3) \approx 1.1 \times (0.2) - 0.3$ $x(0.4) \approx 1.1 \times (0.3) - 0.3 = 0.07$ $\chi(0.\zeta) \simeq 1.1 \times (0.4) - 0.3$ Notice that each step is approximate, and hence, error tende to accumulate as you continue flu process for larger number of iterations.

det's compare the analytical and numerical solutions of $\dot{x} = x - 3$, starting from x(0) = 1.

t	$X(t)$ from analytical colution $X(t) = 3-2e^{t}$	XE(t) from Suler's method	Absolute error of Euler's method xE(+) - x(+) 100%
0	1	1	O
0.T	0.79	0.8	0.01
0.2	0.26	0.28	0.02
0-3	0.30	0.34	0.04
0.4	0 · 02	0.07	0.02
0.5	-0.30	-0 ' 2 2	0.08.
	<u> </u>	<u> </u>	

absolute error is increasing with time.

Enler's method for higher-order systems.

Let
$$\dot{X} = F(X, U)$$
, where $X \in \mathbb{R}^n$, $U \in \mathbb{R}^m$.

Then,
$$F: \mathbb{R}^{n+m} \to \mathbb{R}^n$$
.

Replace \dot{X} by $X(\underline{t+\Delta+}) - X(\underline{t})$.

• Then, compute
$$X$$
 iteratively using the relation $X(t+\Delta t) = X(t) + \Delta t.F(X(t),U(t)).$

det's do an example.

is do an example.

pose
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, and $X = \begin{pmatrix} x_1^2 - x_2 \\ x_2^2 + 4 \end{pmatrix}$.

pute $X(1)$ using $\Delta t = 1$,

Suppose
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, and $X = \begin{pmatrix} x_1^2 - x_2 \\ x_2^2 + 4 \end{pmatrix}$.
Compute $X(1)$ using $\Delta t = 1$,

Starting from $X(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

det's do an example.
Suppose
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, and $X = \begin{pmatrix} x_1^2 - x_2 \\ x_2^2 + 4 \end{pmatrix}$.
Compute $X(1)$ using $\Delta t = 1$,

Starting from
$$X(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
.
 $X(1) = X(6) + \begin{pmatrix} \chi_1(0)^2 - \chi_2(0) \\ \chi_2(0)^2 + 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$.
 $X(2) = X(4) + \begin{pmatrix} \chi_1(1)^2 - \chi_1(1) \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} -35 \\ -36 \end{pmatrix}$

 $X(2) = X(1) + \begin{pmatrix} x_1(1)^2 - x_2(1) \\ x_2(1)^2 + 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 6 \end{pmatrix} + \begin{pmatrix} -35 \\ 40 \end{pmatrix} = \begin{pmatrix} -36 \\ 46 \end{pmatrix}$

Consider the dynamical system doscribed

by $\ddot{x} + x^3 = 5$. Compute x(0.2),

starting from x(0) = 1, $\frac{dx}{dt}\Big|_{t=0} = 0$ using Enler's method with a step size of 0.1.

· Transform ODE to state space description:

For notational convenience call $x_1 = x$, $x_2 = x$. Then, $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, and $X = \begin{pmatrix} x_2 \\ s - x_1^3 \end{pmatrix}$.

 $X(0\cdot1) = \begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} + 0\cdot1 \cdot \begin{pmatrix} x_2(0) \\ 5-x_1(0)^3 \end{pmatrix}$

 $=\begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot 1 \begin{pmatrix} 0 \\ 5 - 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \cdot 4 \end{pmatrix}.$ $X(0.2) = {k_1(0.1) \choose k_2(0.1)} + 0.1 {k_2(0.1) \choose 5-x_1(0.1)^2} = {1 \choose 0.4} + 0.1 {0.4 \choose 5-1^3}$ = $\begin{pmatrix} 1.04 \\ 0.8 \end{pmatrix}$... Read off $x(0.2) = x_1(0.2) = 1.04$.

Equilibrium pts:

 $\dot{X} = F(X)$ if $F(X_e) = 0$.

If you start the dynamical system at an equilibrium pt. X_e , notice that $\dot{X} = F(X_e) = 0$

equilibrium pt. X_e , notice that $X = F(X_e)=0$, meaning the system remains at X_e forever!

Example:
$$X = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$$
, $X = \begin{pmatrix} \chi_1 - \chi_2^2 \\ \chi_1 - 1 \end{pmatrix}$.

Eq. pfs satisfy $x_1 - x_2^2 = 0$ and $x_1 - 1 = 0$. Solutions are given by $x_1 = 1$, $x_2 = \pm 1$. •• There are $2 \cdot q$. pfs. $\binom{1}{1}$ and $\binom{1}{-1}$.